Long-term exposure to ambient fine particulate pollution induces insulin resistance and mitochondrial alteration in adipose tissue.

نویسندگان

  • Xiaohua Xu
  • Cuiqing Liu
  • Zhaobin Xu
  • Kevin Tzan
  • Mianhua Zhong
  • Aixia Wang
  • Morton Lippmann
  • Lung-Chi Chen
  • Sanjay Rajagopalan
  • Qinghua Sun
چکیده

We have previously shown that chronic exposure to ambient fine particulate matter (less than 2.5 μm in aerodynamic diameter, PM₂.₅) pollution in conjunction with high-fat diet induces insulin resistance through alterations in inflammatory pathways. In this study, we evaluated the effects of PM₂.₅ exposure over a substantive duration of a rodent's lifespan and focused on the impact of long-term exposure on adipose structure and function. C57BL/6 mice were exposed to PM₂.₅ or filtered air (FA) (6 h/day, 5 days/week) for duration of 10 months in Columbus, OH. At the end of the exposure, PM₂.₅-exposed mice demonstrated insulin resistance (IR) and a decrease in glucose tolerance compared with the FA-exposed group. Although there were no significant differences in circulating cytokines between PM₂.₅- and FA-exposed groups, circulating adiponectin and leptin were significantly decreased in PM₂.₅-exposed group. PM₂.₅ exposure also led to inflammatory response and oxidative stress as evidenced by increase of Nrf2-regulated antioxidant genes. Additionally, PM₂.₅ exposure decreased mitochondrial count in visceral adipose and mitochondrial size in interscapular adipose depots, which were associated with reduction of uncoupling protein 1 (UCP1) expression and downregulation of brown adipocyte-specific gene profiles. These findings suggest that long-term ambient PM₂.₅ exposure induces impaired glucose tolerance, IR, inflammation, and mitochondrial alteration, and thus, it is a risk factor for the development of type 2 diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exposure to Fine Particulate Air Pollution Causes Vascular Insulin Resistance by Inducing Pulmonary Oxidative Stress

BACKGROUND Epidemiological evidence suggests that exposure to ambient air fine particulate matter (PM2.5) increases the risk of developing type 2 diabetes and cardiovascular disease. However, the mechanisms underlying these effects of PM2.5 remain unclear. OBJECTIVES We tested the hypothesis that PM2.5 exposure decreases vascular insulin sensitivity by inducing pulmonary oxidative stress. M...

متن کامل

Ambient air pollution exaggerates adipose inflammation and insulin resistance in a mouse model of diet-induced obesity.

BACKGROUND There is a strong link between urbanization and type 2 diabetes mellitus. Although a multitude of mechanisms have been proposed, there are no studies evaluating the impact of ambient air pollutants and the propensity to develop type 2 diabetes mellitus. We hypothesized that exposure to ambient fine particulate matter (<2.5 mum; PM(2.5)) exaggerates diet-induced insulin resistance, ad...

متن کامل

Inflammatory Response to Fine Particulate Air Pollution Exposure: Neutrophil versus Monocyte

OBJECTIVES Studies have shown that chronic exposure to ambient fine particulate matter (less than 2.5 µm in aerodynamic diameter, PM₂.₅) pollution induces insulin resistance through alterations in inflammatory pathways. It is critical to study how the immune system responds to this stimulant, which has been linked to cardiovascular and autoimmune diseases, but few studies have been focused on s...

متن کامل

Ambient Air Pollution and Type 2 Diabetes: Do the Metabolic Effects of Air Pollution Start Early in Life?

The adverse health effects of ambient (outdoor) air pollution have been recognized since increased mortality due to smog was reported in London in 1952 (1). Suspended particles (particulate matters) from soot were associated with increased mortality and morbidity related to both respiratory and cardiovascular disorders (1). Since then, great efforts have been made to control ambient air polluti...

متن کامل

Insulin sensitizers prevent fine particulate matter-induced vascular insulin resistance and changes in endothelial progenitor cell homeostasis.

Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 124 1  شماره 

صفحات  -

تاریخ انتشار 2011